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It is long known that the Fokker-Planck equation with prescribed constant coefficients of
diffusion and linear friction describes the ensemble average of the stochastic evolutions
in velocity space of a Brownian test particle immersed in a heat bath of fixed temperature.
Apparently, it is not so well known that the same partial differential equation, but
now with constant coefficients which are functionals of the solution itself rather than
being prescribed, describes the kinetic evolution (in the N → ∞ limit) of an isolated
N -particle system with certain stochastic interactions. Here we discuss in detail this
recently discovered interpretation.

KEY WORDS: Kinetic theory, Kac program, propagation of chaos, diffusion equation
on a high-dimensional sphere, Fokker–Planck equation.

1. INTRODUCTION

As is well known,(3,6,16) the ensemble average of the stochastic evolutions in
velocity space of a Brownian test particle3 of unit mass, immersed in a drifting
uniform heat bath of fixed temperature T and constant drift velocity u, is governed
by the Fokker–Planck equation with prescribed constant coefficients of diffusion
and (linear) friction,

∂t f (v; t) = ∂v ·
(

T ∂v f (v; t) + (
v − u

)
f (v; t)

)
. (1)

1 Department of Mathematics, Rutgers University, Piscataway NJ 08854.
2 Department of Mathematics, City University of New York-CSI, Staten Island NY 10314.
3 For the beginnings of the theory of Brownian motion, see the collection of Einstein’s papers with

commentary.(7)
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Here, f ( . ; t) : R
3 → R+ is the ensemble’s probability density function on velocity

space at time t ∈ R+, and an overall constant has been absorbed in the time scale.
Of course, we could also shift v to obtain u = 0, then rescale v, t , and f to
obtain T = 1; however, for pedagogical purposes we refrain from doing so. The
solution f (v; t) of (1) is given by f (v; t) = ∫

R3 Gt (w, v|u; T ) f0(w)d3w, where
f0(v) ≡ f (v; 0) and

Gt (w, v|u; T ) = (
2πT (1 − e−2t )

)− 3
2 exp

(
− 1

2T

|v − u − we−t |2
1 − e−2t

)
(2)

is the Green function for (1), see, Refs. (6, 16). In its standard form, i.e. with T = 1
and u = 0, (2) is known as the (Mehler) kernel of the adjoint Ornstein-Uhlenbeck
semigroup (a.k.a. Fokker–Planck semigroup).

Over the years, the Ornstein-Uhlenbeck semigroup and its adjoint have come
to play an important role in several branches of probability theory(9) related, in
some form, to Brownian motions. The fact that the explicitly known kernel (2) of
the Fokker–Planck semigroup readily lends itself to analytical estimates has led
to useful applications also outside the realm of probability theory. In particular,
in recent years the Fokker–Planck semigroup has found applications in kinetic
theory, the subfield of transport theory which is concerned with the approach to
equilibrium and the response to driving external forces of individual continuum
systems not in local thermal equilibrium; see, for instance, the review Ref. (18).

However, the linear Fokker–Planck equation itself, (1), usually is not thought
of as a kinetic equation for the particle density function on velocity space of
an individual, isolated space-homogeneous system of particles in some compact
domain, which perform a microscopic autonomous dynamics that may be de-
terministic or stochastic but should satisfy the usual conservation laws of mass
(particle number), energy and, depending on the shape of the domain in physi-
cal space and its boundary conditions, also momentum and angular momentum.
Evidently the very meaning of f and the parameters u and T in (1) voids this
interpretation. Yet, with a re-interpretation of f , u and T it is possible to assign
to (1) a kinetic meaning.

Incidentally, the first result showing that at least a partial re-interpretation
of (1) in this direction is possible can be found in a paper by Villani(17) who,
in his study of the space-homogeneous Landau equation for the weak deflection
(i.e. Landau) limit of a gas of particles with Maxwellian molecular interactions,
discovered that for isotropic velocity distribution functions f (and only for these)
the Landau equation is identical to (1), with parameters u = 0 and T matched to
guarantee energy conservation. For general non-isotropic data the Landau equation
for Maxwell molecules is identical to a more complicated equation than (1).

To pave the ground for a complete re-interpretation of (1), which requires
re-assigning the meaning of f , u and T , we first note that by the linearity of
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(1) we can scale f to any positive normalization we want. We now introduce the
following functionals of f ,
the “mass of f ”

m( f ) =
∫

R3

f (v; t)d3v , (3)

the “momentum of f ”

p( f ) =
∫

R3

v f (v; t)d3v , (4)

and the “energy of f ”

e( f ) =
∫

R3

1

2
|v|2 f (v; t)d3v . (5)

The “angular momentum of f ” for a space-homogeneous f (v; t) is simply j ( f ) =
xCM × p( f ), with xCM the center of mass of the system, but this does not add any
further insight and hence will not be considered explicitly. The functionals (3),
(4), and (5) inherit some time dependence from the solution f ( . ; t) of (1), but to
find this dependence explicitly it is not necessary to solve for f first. Indeed, it
is an elementary exercise in integration by parts to extract from (1) the following
linear evolution equations with constant coefficients for m, p, and e,

ṁ = 0 , (6)

ṗ = mu − p , (7)

ė = 3T − 2e + u · p , (8)

which, beside the conservation of mass, i.e. m( f ) = m( f0), describe the ex-
ponentially fast convergence to a stationary state p( f ) � m( f0)u and e( f ) �
3
2 T + 1

2 m( f0)|u|2. While all this is of course quite trivial and well known, the
relevant fact to realize here is that whenever the energy and the momentum of
the initial f0 equal these asymptotically stationary values, viz. if p( f0) = m( f0)u
and e( f0) = 3

2 T + 1
2 m( f0)|u|2, then beside mass m, also energy e and momentum

p will be conserved. Conservation of mass, energy, and momentum for such a
large subset of initial data f0 does not yet mean that we may already think of
the linear equation (1) as a kinetic equation, which should conserve mass, energy,
and (depending on the shape of the domain in physical space and its boundary
conditions) also momentum for all initial data, no matter what their mass, energy
and momentum are; moreover, a genuine kinetic equation for particles with (pair
or higher order) interactions must express the time derivative of f in terms of an
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at least4 bilinear operator in f . However, with the help of (3), (4) and (5) we now
replace T and u in (1) to obtain just such a kinetic equation.

Indeed, consider the a priori nonlinear Fokker–Planck equation

∂t f (v; t) = ∂v ·
(1

3

(
2e( f )m( f ) − | p( f )|2)∂v f (v; t) + (

m( f )v − p( f )
)

f (v; t)
)
,

(9)

where f ( . ; t) : R
3 → R+ now is a particle density function on velocity space at

time t ∈ R+. The right-hand side of (9) is a sum of a bilinear and a trilinear operator
acting on f which now guarantees conservation of mass, momentum, and energy
for all initial data f0 � 0, as verified by repeating the easy exercise in elementary
integrations by parts using (9) to find ṁ = 0 as well as ṗ = m p − pm = 0 and ė =
2em − | p|2m − 2em + | p|2m = 0. Of course, after this fact of mass, momentum,
and energy conservations the a priori nonlinear equation (9) in effect becomes
just a completely and explicitly solvable linear5 Fokker–Planck equation (1), only
now with parameters u and T which are not prescribed but determined through the
initial data f0, viz. u = p( f0)/m( f0) ≡ u0 and 3

2 T = e( f0) − | p( f0)|2/2m( f0) ≡
ε0; we also set m( f0) ≡ m0 and e( f0) = e0. Accordingly, (9) inherits from (1) the
feature that, as t → ∞, its solutions f converge pointwise exponentially fast to
the Maxwellian equilibrium state

fM(v) = m0

(
3

4πε0

) 3
2

exp

(
−3|v − u0|2

4ε0

)
, (10)

with monotonically increasing relative entropy

S( f | fM) = −
∫

R3

f (v; t) ln
f (v; t)

fM(v)
d3v (11)

which in fact approaches its maximum value 0 exponentially fast.
Since (9) displays all the familiar features of a kinetic equation (formal nonlin-

earity; conservation laws of mass, momentum, energy; an H -Theorem; approach
to equilibrium; Maxwellian equilibrium states), at this point we may legitimately
contemplate (9) as a kinetic equation of some spatially homogeneous, isolated
system of N interacting particles in a compact spatial domain compatible with
momentum conservation (e.g. a rectangle with periodic boundary conditions). In
the remainder of this paper we show explicitly how (9) arises from the Kolmogorov

4 The Boltzmann, the Landau, and the Vlasov kinetic equations have bilinear “interaction operators,”
the Balescu–Lenard–Guernsey equation has a higher order nonlinearity which reduces to the bilinear
format in the long wavelength regime.

5 In this sense (9) is “almost nonlinear,” or “essentially linear,” depending on one’s viewpoint.
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equation6 for the adjoint evolution of an underlying N -particle Markov process in
the limit N → ∞. We use the strategy originally introduced by Kac(10) in 1956 in
the context of his work on a caricature of the Boltzmann equation; for important
recent work on Kac’s original program, see Ref. 4. As Kac realized, the crucial
property that needs to be established in order to validate the N → ∞ limit is what
he called “propagation of chaos,” which loosely speaking means that if the particle
velocities are uncorrelated at t = 0, they remain uncorrelated at later times; this
can be rigorously true only on the continuum scale in the limit N → ∞.

Interestingly enough, by adding some suitable lower order terms to the pu-
tatively simplest N -particle Markov process that leads to the (kinetic) Fokker–
Planck equation in the limit N → ∞, the corresponding Kolmogorov equation
for an ensemble of such isolated N -particle systems can be simplified to be just
the diffusion equation on the 3N − 4-dimensional manifold (a sphere) of constant
energy and momentum. Since therefore both the finite-N and the infinite-N equa-
tions are exactly solvable, the kinetic limit N → ∞ can be carried out explicitly
and studied in great detail. For this reason we actually defer the discussion of the
underlying N -particle process to Appendix A.1.2 while in the main part of our
paper we analyze the diffusion equation on S

3N−4√
2Nε0

and derive from it the kinetic
Fokker–Planck equation on R

3.
Technically, we apply the Laplace–Beltrami operator to a probability density

on S
3N−4√

2Nε0
and then integrate out N − n velocities over their constrained domain

of accessibility. Taking next the limit N → ∞ yields a Fokker–Planck operator
acting on the n-th marginal density on R

3n . Thus we obtain a linear Fokker–Planck
hierarchy of equations indexed by n. Using the Hewitt–Savage decomposition the-
orem, the hierarchy is seen to be generated by the single, a priori nonlinear kinetic
Fokker–Planck equation (9) which in view of the conservation laws is equivalent to
the essentially linear Fokker–Planck equation (1) with constant parameters which
are determined by the initial data.

Experts in probability theory may have noticed a similarity between the first
part of our program and what has been called the “Poincaré limit”(1); in fact, our
approach is “dual” to Bakry’s approach. More specifically, Bakry(1) has shown that
the action of the Laplace–Beltrami operator for S

N√
N ↪→ R

N+1 on a probability
density function over a “radial” coordinate axis of S

N√
N becomes identical, in the

limit N → ∞, to the action of the Ornstein–Uhlenbeck operator on the same
density viewed as a function over R. Obviously, whenever the “radial” function
is obtained by taking the marginal of a probability density over S

N√
N

, i.e. by in-
tegrating out the N − 1 Cartesian coordinates of the embedding space which are
perpendicular to a fixed “radial” direction, the Ornstein–Uhlenbeck operator acts

6 In the physics literature, the Kolmogorov equation for an N -particle Markov process is traditionally
called “master equation.”
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on the limiting marginal density as N → ∞. This relationship between the oper-
ators is reflected at the spectral level by the convergence of the whole structure of
orthogonal eigenfunctions of the Laplacian on S

N√
N

(hyper-spherical harmonics)
to the orthogonal eigenfunctions of the Ornstein–Uhlenbeck operator on R (Her-
mite polynomials multiplied by the square root of their Gaussian weight function);
one of the earliest works is Ref. (12), while more recent works on the Poincaré
limit, containing interesting connections with the theory of Markov semigroups,
are Refs. (1, 2). Our procedure is “dual” to Bakry’s approach in the sense that
we integrate out subsets of the Cartesian variables of the embedding space af-
ter having applied the Laplace–Beltrami operator to a probability density on the
high-dimensional sphere, thereby obtaining the adjoint Ornstein–Uhlenbeck op-
erator acting on the respective marginals; in addition, while Bakry considers only
mass and energy conservation, we consider conservation of mass, energy, and
momentum.

Incidentally, our work is not inspired by Bakry’s works on the Poincaré limit,
nor by Villani’s discovery about the isotropic evolution of the space-homogeneous
Landau equation, about both of which we learned only after our own findings.
Rather, our study of the diffusion equations on the 3N − C-dimensional spheres
of constant energy (C = 1), respectively energy and momentum (C = 4), which
began in Ref. (11), was originally conceived of as a technically simpler primer
for our investigation (also in Ref. (11)) of the Balescu–Prigogine master equation
for Landau’s kinetic equation. And while the present paper is also a technical
continuation of Ref. (11), in the sense that here we supply various calculations
that we had announced in Ref. (11), the main purpose of the present paper is to
amplify the conceptual spin-off of our technical investigations, the new physical
interpretation of one of the simplest and best known linear transport equations as
an (almost nonlinear) kinetic equation. As should be clear from our discussion in
this introduction, this kinetic theory interpretation of the prototype Fokker–Planck
equation may have been suspected by others long ago, yet we have not been able
to find the whole story in the literature.

In what follows, for the sake of simplicity we set m0 = 1, and accordingly7

obtain p( f0) ≡ u0 and e( f0) − | p( f0)|2/2 = e0 − |u0|2/2 ≡ ε0. With these sim-
plifications (9) now becomes

∂t f (v; t) = ∂v ·
(

2

3
ε0∂v f (v; t) + (

v − u0
)

f (v; t)

)
. (12)

While (12) is essentially a linear PDE, it should just be kept in mind that ε0 and
u0 are functionals of f which are determined by the initial data f0 and not chosen

7 Setting m0 = 1 means we should now speak of the energy per particle e0, the thermal energy per
particle ε0, and the momentum per particle p0(= u0).
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independently.8 We next shall derive (12) from the diffusion equation equation on
S

3N−4√
2Nε0

in the spirit of Kac’s program.

2. THE FINITE-N ENSEMBLES

Consider an infinite ensemble of i.i.d. random vectors {V α}∞α=1 where each
V = (v1, ..., vN ) ∈ R

3N represents a possible micro-state of an individual system
of N particles with velocities vi = (vi1, vi2, vi3) ∈ R

3 and particle positions as-
sumed to be uniformly distributed over a periodic box; hence, particle positions
will not be considered explicitly. Each V takes values in the 3N − 4-dimensional
manifold of constant energy e0 and momentum u0,

M
3N−4
u0,e0

=
{

V :
N∑

k=1

vk = Nu0,

N∑
k=1

1

2
|vk |2 = Ne0, e0 >

1

2
|u0|2

}
. (13)

The manifold M
3N−4
u0,e0

is identical to a 3N − 4-dimensional sphere of radius
√

2Nε0

(where ε0 appears above (12)), centered at U = (u0, ..., u0) and embedded in
the 3(N − 1)-dimensional affine linear subspace of R

3N given by U + L
3N−3,

where L
3N−3 ≡ R

3N ∩ {
V ∈ R

3N :
∑N

k=1 vk = 0
}

is the space of velocities in any
center-of-mass frame. The ensemble at time τ is characterized by a probability
density F (N )(V ; τ ) on M

3N−4
u0,e0

, the evolution of which is determined by the diffusion
equation

∂τ F (N )(V ; τ ) = �
M

3N−4
u0 ,e0

F (N )(V ; τ ), (14)

where �
M

3N−4
u0 ,e0

is the Laplace–Beltrami operator on M
3N−4
u0,e0

. Since all particles are
of the same kind, we consider only solutions to (14) which are invariant under the
symmetric group SN applied to the N components in R

3 of V . Clearly, permutation
symmetry is preserved by the evolution.9 We will show that the diffusion equation
(14), here viewed as a master equation, leads precisely to the essentially linear
Fokker–Planck equation (12) in the sense of Kac’s program: (a) the Fokker–Planck
equation (12) arises as the N → ∞ limit of the equation for the first marginal of
F (N )(V ; τ ) derived from (14), and (b) propagation of chaos holds. In this section
we prepare the ground by discussing the finite-N equation (14). The limit N → ∞
is carried out in the next section, while propagation of chaos is discussed in the
final section.

8 The identification of (9) with (12) is valid only for isolated systems that can freely translate. If a
driving external force field F is applied, then e( f ) and p( f ) are no longer constant and (9) – with the
addition of the forcing term −F · ∂v f to its r.h.s. – is the relevant equation.

9 In what follows, for the sake of notational simplicity we will not enforce this symmetry explicitly, but
the reader should be aware that (for instance) all the eigenfunctions that appear below in the solution
for F (N ) can be easily symmetrized.
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For the sake of completeness, we begin by listing some general facts about
the diffusion equation. We note that the Laplacian �

M
3N−4
u0 ,e0

is a negative semi-
definite, essentially self-adjoint operator on the dense domain C∞(M3N−4

u0,e0
) ⊂

L2(M3N−4
u0,e0

), thus it has a unique self-adjoint extension with domain H2(M3N−4
u0,e0

).
Its self-adjoint extension is the generator of a non-expansive semigroup
on L2(M3N−4

u0,e0
) which is strictly contracting on the L2 orthogonal comple-

ment of the constant functions. Thus, we may ask that the initial condition
limt↓0 F (N )( . ; τ ) = F (N )

0 ( . ) ∈ L2(M3N−4
u0,e0

) (which implies F (N )
0 ∈ L1(M3N−4

u0,e0
)).

Yet, as is well-known, the diffusion semigroup is so strongly regularizing that
we may even take F (N )

0 ( . ) ∈ M+,1(M3N−4
u0,e0

), a probability measure, and obtain
F (N )( . ; τ ) ∈ C∞(M3N−4

u0,e0
) for all τ > 0.

In fact, the solutions of (14) can be computed quite explicitly in terms of an
eigenfunction expansion. Since via translation by U (choosing a center-of-mass
frame) and scaling by

√
2Nε0 (choosing a convenient unit of energy) the manifold

M
3N−4
u0,e0

can be identified with the unit sphere centered at the origin of the linear
subspace L

3N−3 ⊂ R
3N , the complete spectrum of �

M
3N−4
u0 ,e0

and an orthogonal
basis of eigenfunctions can be obtained from the well-known eigenvalues and
eigenfunctions for the Laplacian on the unit sphere S

3N−4 ↪→ R
3N−3. Of course,

in our case the embedding is S
3N−4 ↪→ L

3N−3 with L
3N−3 isomorphic by a rotation

to standard R
3N−3. Thus we start from M

3N−4
u0,e0

and we first carry out a rotation in
R

3N that transforms V to W = UV in such a way that L
3N−3 is mapped to the

3N − 3-dimensional linear subspace
{

W : wN = 0
}
. Obviously, UT is the linear

transformation that diagonalizes the projection operator onto L
3N−3. A complete

orthonormal set of eigenvectors for such a projection is readily calculated and
leads to

w1 =
√

N − 1

N

[
v1 − 1

N − 1

N∑
i=2

vi

]
...

wn =
√

N − n

N − n + 1

[
vn − 1

N − n

N∑
i=n+1

vi

]
...

wN−1 = 1√
2

[vN−1 − vN ]

wN = 1√
N

N∑
i=1

vi (15)
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It is easily checked that the matrix associated with this transformation is indeed
orthogonal, and that wN vanishes whenever V ∈ L

3N−3. More generally, the affine
subspace U + L

3N−3 is mapped to the linear manifold
{

W : wN = √
N u0

}
and

M
3N−4
u0,e0

is mapped to{
W : wN =

√
N u0,

N−1∑
i=1

|wi |2 = 2Ne0 − N |u0|2 = 2Nε0

}
(16)

which implies that the truncated vector (w1, . . . ,wN−1) belongs to the sphere
S

3N−4√
2Nε0

↪→ R
3N−3 (in wk-coordinates). Thus, the transformU allows one to analyse

the N -particle system with energy and momentum conservation (“periodic box”
setup) in terms of an (N − 1)-particle system with only energy conservation (a
“container with reflecting walls” setup).10 For future reference, we also observe
that for n fixed and N → ∞ the effect of U reduces to a translation of each of the n
velocities by u0, in the following sense. Consider a consistent hierarchy of vectors
of increasing size N , in which lower-N vectors can be obtained from the higher-N
ones by truncation (i.e. projection). Suppose that the vectors belong to U + L

3N−3

for all N , apply the transformation in (15) and look at the n-th component. Since∑N
i=n+1 vi = N u0 − ∑n

i=1 vi , where
∑n

i=1 vi is independent of N , we find

lim
N→∞

wn = vn − u0. (17)

We now recall that the Laplacian is invariant under Euclidean transformations.
Thus, under our orthogonal transformation U , the Laplacian �

M
3N−4
u0 ,e0

becomes the

Laplacian on S
3N−4√

2Nε0
in R

3N−3, the space of truncated vectors (w1, . . . ,wN−1)
(which will also be denoted by W , at the price of abusing the notation). Since
�

S
3N−4√

2Nε0

= 1
2Nε0

�S3N−4 , and the Laplacian on the unit sphere S
3N−4 has spectrum

j( j + 3N − 5), j = 0, 1, . . . , the spectrum of −�
M

3N−4
u0 ,e0

is

λ
( j)

M
3N−4
u0 ,e0

= j( j + 3N − 5)

2Nε0
, j = 0, 1, . . . . (18)

The eigenspace on S
3N−4 for the j-th eigenvalue has dimension

N ( j, 3N − 3) = (3N − 5 + 2 j)(3N − 6 + j)!

j!(3N − 5)!
(19)

and is spanned by an orthogonal basis of hyper-spherical harmonics11 on
S

3N−4 ⊂ R
3N−3 of order j , here denoted Ỹ j,	(ω; 3N − 3), with 	 ∈ D j =

10 The gas in such a container was discussed in our earlier work,(11) but without detailed calculations.
Our calculations with the w variables here now supply the relevant details.

11 The hyper-spherical harmonics on S
n are restrictions to S

n ⊂ R
n+1 of homogeneous harmonic

polynomials in R
n+1. For j > 0 the restriction has to be non-constant, since Ỹ0,1 ≡ const.
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{1, . . . ,N ( j, 3N − 3)} and with ω ∈ S
3N−4. The indexing of our Ỹ j,	(ω; 3N − 3)

follows the convention of Ref. (13) for his Y j,	 and differs from what might have
been anticipated from the familiar convention for spherical harmonics on S

2. Our
reason for using tildes atop the function symbols is to remind the reader that we
will use a normalization of the Ỹ j,	(ω; 3N − 3) which conveniently suits our pur-
poses and does not seem to agree with any of the existing conventions, such as in
Ref. (13) or for the spherical harmonics on S

2. Our convention is motivated by the
analysis of the large N behavior of the eigenfunctions, carried out in Appendix
A.1.3.

Hence, the eigenspace of �
M

3N−4
u0 ,e0

associated with the j-th eigenvalue in (18)

is spanned by the eigenfunctions Ỹ j,	

(
W/

√
2Nε0; 3N − 3

)
, 	 ∈ D j , where W is

given by (15) for n = 1, . . . , N − 1. To shorten the notation we introduce

G(N )
j,	 (V ) ≡ ∣∣M3N−4

u0,e0

∣∣−1
Ỹ j,	

(
W/

√
2Nε0 ; 3N − 3

)
; (20)

here, the factor
∣∣M3N−4

u0,e0

∣∣−1
is introduced for later convenience.

In terms of the eigenfunctions G(N )
j,	 (V ), the solution to equation (14) is simply

given by the generalized Fourier series

F (N )(V ; τ ) = ∣∣M3N−4
u0,e0

∣∣−1 +
∑
j∈N

∑
	∈D j

F (N )
j,	 G(N )

j,	 (V ) e
− j( j+3N−5)

2Nε0
τ

(21)

with Fourier coefficients F (N )
j,	 given by

F (N )
j,	 =

〈
F (N )

0

∣∣∣G(N )
j,	

〉
〈
G(N )

j,	

∣∣∣G(N )
j,	

〉 (22)

where 〈 . | . 〉 denotes the inner product in L2(M3N−4
u0,e0

). Notice, though, that the

numerator 〈F (N )
0 |G(N )

j,	 〉 can be extended to mean the canonical pairing of the G(N )
j,	 s

with an element of their dual space, which allows us to take F (N )
0 to be a measure. In

particular, we may take F (N )
0 to be the Dirac measure concentrated at any particular

point of M
3N−4
u0,e0

. The formula (21) then describes the fundamental solution of

the diffusion equation (14). In any event, whatever F (N )
0 , (21) makes it evident

that when τ → ∞ the ensemble probability density function on M
3N−4
u0,e0

decays

exponentially fast to the uniform probability density
∣∣M3N−4

u0,e0

∣∣−1 =
∣∣∣S3N−4√

2Nε0

∣∣∣−1
=

F (N )
0,1 G(N )

0,1 (V ), which is the constant eigenfunction corresponding to the smallest
non-degenerate eigenvalue 0 of the negative Laplacian.
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3. EVOLUTION OF THE MARGINALS

To study the limit N → ∞ for the time-evolution of the ensemble measure,
we need to consider the hierarchy of n-velocity marginal distributions

F (n|N )(v1, . . . , vn; τ ) ≡
∫



3(N−n)−4
u0,e0

F (N )(V ; τ ) dvn+1 . . . dvN (23)

where 

3(N−n)−4
u0,e0 is given by all the (vn+1, . . . , vN ) such that

N∑
i=n+1

vk = N u0 −
n∑

i=1

vk,

N∑
i=n+1

|vk |2 = 2Ne0 −
n∑

i=1

|vk |2 (24)

and F (n|N ) has domain {(v1, . . . , vn) :
∑n

k=1 |vk − u0|2 � 4(N − n)ε0} ⊂ R
3n .

The evolution equation for the n-th marginal F (n|N )(v1, . . . , vn; τ ) is obtained
by integrating (14) over (vn+1, . . . , vN ) ∈ R

3N−3n , using the representation of the
Laplace–Beltrami operator given in (A.3) of Appendix A.1.1. Then, a straightfor-
ward calculation (previously presented in Ref. (11)) shows that F (n|N ) satisfies

∂τ F (n|N ) =
n∑

i=1

∂

∂vi
· ∂ F (n|N )

∂vi
− 1

N

3∑
k=1

n∑
i, j=1

∂2 F (n|N )

∂vik∂v jk

− 1

2Nε0

n∑
i, j=1

∂

∂vi
·
(

(vi − u0) (v j − u0) · ∂ F (n|N )

∂v j

)

+ 3(N − n)

2ε0 N

n∑
i=1

∂

∂vi
·
(

(vi − u0)F (n|N )
)
. (25)

Clearly, to obtain the solutions of these equations it is advisable to integrate
the series solution for F (N )(V ; τ ), (21). For this purpose, it will be convenient
to calculate the marginals in terms of the rotated variables W . Changing the
integration variables12 gives

F (n|N )(v1, . . . , vn; τ ) =
√

N
N−n

∫
F (N )(V ; τ ) dwn+1 . . . dwN−1 (26)

where the integral is over S
3(N−n)−4√

2Nε0−
∑n

i=1|w|2i
, and we abused the notation F (N )(V ; τ )

by applying it to what is now regarded as a function of (v1, ..., vn,wn+1, ...,wN−1).
To obtain the series solution for F (n|N )(V ; τ ) we need to express (21) in the
variables (v1, ..., vn,wn+1, ...,wN−1) and then integrate term by term in the spirit
of (26). To accomplish this we need to choose explicitly a basis of spherical

12 Note that (15) defines a one-to-one linear map with determinant
√

N
N−n between (vn+1, . . . vN ) and

(wn+1, . . . wN−1, zN ), where zN ≡ wN − 1√
N

∑n
i=1 vi .
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harmonics Ỹ j,	 on S
3N−4. It is convenient to do this in an iterative fashion, by

assuming that a basis is known for the spherical harmonics with one independent
variable less, here Ỹk,m(ω3N−5; 3N − 4) with ω3N−5 ∈ S

3N−5. Then, the desired
basis is obtained(13) by taking all the elements in the given lower-dimensional basis
and multiplying them by associated Legendre functions of the “extra” variable.
In our case the (3N − 3)-th variable will be w11/

√
2Nε0, the first component of

W/
√

2Nε0, and ω3N−5 will be a unit vector in the space of the remaining 3N − 4
components, denoted by (W )3N−4/

√
2Nε0; thus,

Ỹ j,	

(
W√
2Nε0

; 3N − 3

)
= Ỹk,m

(
(W )3N−4√

2Nε0

; 3N − 4

)
P̃k

j

(
w11√

2Nε0

; 3N − 3

)
(27)

where k = 0, 1, . . . , j , m = 1, . . . ,N (k, 3N − 4) and each choice of the pair k, m
is associated with a value of the degeneracy index 	 for the basis Ỹ j,	; moreover, P̃k

j

is an associated Legendre function,(13) suitably normalized (see Appendix A.1.3).
By repeating this process 3n times, we write out the eigenfunctions in the form

Ỹ j,	

(
W√
2Nε0

; 3N − 3

)
= Ỹk3n ,m

(
(W )3N−3n−3√

2Nε0

; 3N − 3n − 3

)
× P̃k3n

k3n−1

(
wn3√

2Nε0

; 3N − 3n − 2

)
× P̃k2

k1

(
w12√

2Nε0

; 3N − 4

)
· · · P̃k1

j

(
w11√

2Nε0

; 3N − 3

)
(28)

where 0 � k3n � . . . � k1 � j and m = 1, . . . ,N (k3n, 3N − 3n − 3). Now let
g(n|N )

j,	 (v1, . . . , vn) denote the n-th “marginal” of G(N )
j,	 (V ) (as for F (N ) in (26)),

and set N ∗ ≡ N − n − 1. We find

g(n|N )
j,	 (v1, . . . , vn) = ∣∣M3N−4

u0,e0

∣∣−1
∫

Ỹk3n ,m

(
(W )3N ∗√

2Nε0

; 3N ∗
)

dwn+1 . . . dwN−1

×
√

N
N−n P̃k3n

k3n−1

(
wn3√

2Nε0

; 3N −3n−2

)
· · · P̃k1

j

(
w11√

2Nε0

; 3N −3

)
(29)

where the integral is over the same domain as in (26). The integral of Ỹk3n ,m is non-
zero if and only if k3n = 0 and m = 1, and the integrals over Ỹ0,1 are determined
only up to the overall factor Ỹ0,1, which we may choose to be unity without loss
of generality. Accordingly, g(n|N )

j,	 ≡ 0 unless 	 ∈ D̃ j ⊂ D j , where D̃ j contains
the indices of the basis functions that “descend” from the uniform harmonic in
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R
3N−3n−3. For such 	’s the integrated eigenfunctions then become

g(n|N )
j,	 (v1, . . . , vn) = P̃k1

j

(
w11√

2Nε0

; 3N −3

)
· · · P̃0

k3n−1

(
wn3√

2Nε0

, 3N −3n−2

)

×
√

N

N − n

∣∣S3(N−n)−4
∣∣∣∣S3N−4

∣∣ 1
√

2Nε0
3n

×
(

1 − 1√
2Nε0

n∑
i=1

|wi |2
) 3(N−n)−4

2

. (30)

The series for the n-th marginal F (n|N )( . ; τ ) (the integrated (21)) is a series in the
functions (30), viz.

F (n|N )(v1, . . . , vn; τ ) =
∑

j∈N∪{0}

∑
	∈D̃ j

F (N )
j,	 g(n|N )

j,	 (v1, . . . , vn) e
− j( j+3N−5)

2Nε0
τ
. (31)

4. THE LIMIT N → ∞
We are now ready to take the infinitely many particles limit. First of

all, we observe that the evolution equation for the marginal velocity densities
f (n)(v1, . . . , vn; τ ) ≡ limN→∞ F (n|N )(v1, . . . , vn; τ ) which obtains in the formal
limit N → ∞ from (25) is the essentially linear Fokker–Planck equation in R

3n ,

∂τ f (n) =
n∑

i=1

∂

∂vi
·
(

∂ f (n)

∂vi
+ 3

2ε0
(vi − u0) f (n)

)
. (32)

We now show that the series expansion for the time-evolved finite-N marginals
F (n|N )( . ; τ ) converge under natural conditions to solutions of these equations.

Beginning with the spectrum of �
M

3N−4
u0 ,e0

, we note that the limit N → ∞ yields

lim
N→∞

{
λ

( j)

M
3N−4
u0 ,e0

}∞

j=0
=

{
3 j
2ε0

}∞

j=0
. (33)

Thus, the limit spectrum is discrete. In particular, there is a spectral gap separating
the origin from the rest of the spectrum. As a result, the time evolution of the
limit N → ∞ continues to approach a stationary state exponentially fast when
τ → ∞.

Coming to the eigenfunctions, the expression on the second line in (30)

contains the n-velocity marginal distribution of the uniform density
∣∣M3N−4

u0,e0

∣∣−1

(the j = 0 case). As is well-known at least since the time of Boltzmann,
this distribution converges pointwise when N → ∞ to the n-velocity drifting
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Maxwellian on R
3n ,

f ⊗n
M (v1, ..., vn) =

(
3

4πε0

) 3n
2

n∏
i=1

exp
(
− 3

4ε0
|vi − u0|2

)
(34)

(recall (17)). In terms of eigenfunctions this means that the “projection” onto
R

3n of the j = 0 eigenfunction of the Laplace–Beltrami operator on S
3N−4√

2Nε0
con-

verges pointwise (in fact, even uniformly) to the j = 0 eigenfunction of the linear
Fokker–Planck operator in R

3n , appearing in the r.h.s. of (32). The connection
between the eigenfunctions generalizes to the cases j �= 0; cf.(2) for the special
case u0 = 0. The asymptotic behavior for N → ∞ of the associated Legendre
functions in (30), which is discussed in Appendix A.1.3, together with (17),
yields that g(n)

j,	(v1, . . . , vn) ≡ limN→∞ g(n|N )
j,	 (v1, . . . , vn) exists pointwise for all

(v1, . . . , vn) ∈ R
3n , with

g(n)
j,	(v1, . . . , vn) = (−1) j

2 j/2
Hj−k1

(√
3

4ε0
(v11− u1)

)
· · · Hk3n−1

(√
3

4ε0
(vn3− u3)

)
×

(
3

4πε0

) 3n
2

n∏
i=1

exp
(
− 3

4ε0
|vi − u0|2

)

≡ (−1) j

2 j/2

(
3

4πε0

)3n
2

n∏
i=1

e− 3
4ε0

|vi −u0|2
3∏

l=1

Hmi ·l

(√
3

4ε0
(vil − ul)

)
(35)

for all 	 ∈ D̃ j , where Hm(x) is the Hermite polynomial of degree m on R, and
we defined m1 = j − k1, m2 = k1 − k2, . . . , m3n = k3n−1. In terms of the mi ’s,
the index set D̃ j counts all the choices of integers 0 � m1, . . . , m3n � j such that∑3n

i=1 mi = j . For n = 1 one readily recognizes the well-known eigenfunctions (14)

for the linear Fokker–Planck operator in R
3, viz. r.h.s.(12) with constant ε0 and

u0, easily calculated by separation of variables. In fact, what we have recovered
are precisely the eigenfunctions for the linear Fokker–Planck operator in R

3n , see
(32).

Now assume that one can choose sequences of initial conditions F (N )
0 such

that, for each fixed j and 	, the Fourier coefficients F (N )
j,	 converge to a limit

Fj,	 such that each initial n-velocity marginal density, n ∈ N, converges in (L2 ∩
L1)(R3n) to

f (n)(v1, . . . , vn; 0) = f ⊗n
M (v1, ..., vn) +

∑
j∈N

∑
	∈D̃ j

Fj,	g(n)
j,	(v1, . . . , vn); (36)
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it then follows that the subsequent evolution of the n-velocity marginal densities
is given by

f (n)(v1, . . . , vn; τ ) = f ⊗n
M (v1, ..., vn) +

∑
j∈N

∑
	∈D̃ j

Fj,	g(n)
j,	(v1, . . . , vn)e

− 3 j
2ε0

τ
.

(37)

Formula (37) describes an exponentially fast approach to equilibrium in the en-
semble of infinite systems. The f (n)( . ; τ ) ∈ (L2 ∩ L1)(R3n), and in addition they
automatically satisfy ∫

R3n

f (n)(v1, . . . , vn; τ ) dv1 . . . dvn = 1 (38)∫
R3n

(v1 + · · · + vn) f (n)(v1, . . . , vn; τ ) dv1 . . . dvn = nu0 (39)∫
R3n

1

2
(|v1|2 + · · · + |vn|2) f (n)(v1, . . . , vn; τ ) dv1 . . . dvn = ne0 (40)

for all τ � 0 (recall that e0 = ε0 + |u|20/2). In fact, (37) solves (32), which now
implies that f (n)( . ; τ ) can also be expressed through integration of the initial
data against the n-fold tensor product of (2). The upshot is that f (n)( . ; τ ) ∈
S(R3n) ∀τ > 0 (Schwartz space). To vindicate these conclusions, for us it remains
to show that the infinitely many constraints on each Fj,	 implied by (36), viz.

Fj,	 =
〈

f (n)
0

∣∣∣g(n)
j,	

〉
〈
g(n)

j,	

∣∣∣g(n)
j,	

〉 ∀n ∈ N, (41)

where 〈 . | . 〉 now means inner product in L2(R3n), do not impose impossible
consistency requirements. To show this, recall that the f (n)

0 by definition satisfy∫
R3

f (n+1)
0 (v1, . . . , vn+1)dvn+1 = f (n)

0 (v1, . . . , vn), (42)

which in view of (36) implies that the hierarchy of the g(n)
j,	 must satisfy

∫
R3

g(n+1)
j,	 (v1, . . . , vn+1)dvn+1 = g(n)

j,	(v1, . . . , vn)
3∏

i=1

δk3(n+1)−i ,0, (43)

which is readily verified by explicit integration of (35). Thus, the constraints (41)
are automatically consistent, and this vindicates our initial assumption.
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5. PROPAGATION OF CHAOS

Setting n = 1 in (32), and changing the time scale by setting τ = 2
3ε0t , we

recover (12), with f (1) in place of f . However, (12) (or (9) for that matter) cannot be
said to have been shown to be a kinetic equation yet. Note that propagation of chaos
has not entered the derivation of (32). In fact, (32) for n = 1, 2, . . . constitutes a
“Fokker–Planck hierarchy” analogous to the the well-known Boltzmann, Landau
and Vlasov hierarchies which arise in the validation of kinetic theory(5,15) using
ensembles. In our case the hierarchy has the very simplifying feature that the n-th
equation in the hierarchy is decoupled from the equation for the n + 1-th marginal.
Since all the hierarchies used in the validation of kinetic theory are by construction
linear13 in the “vector” of the f (n), whenever one has a decoupling hierarchy one
obtains closed linear equations for the f (n). In particular, our equation (32) with
n = 1 is already a closed linear equation for f (1). However, at this point, any
f (n) is still in general an ensemble superposition of states; in particular, f (1) still
describes a statistical ensemble of pure states f with same mass, momentum, and
energy. By ignoring this fact one can mislead oneself into thinking that (32) with
n = 1 and f (1) in place of f is already the kinetic equation we sought.

The final step in extracting (12) as kinetic equation for the pure states in-
volves the Hewitt–Savage(8) decomposition theorem. This theorem says that in
the continuum limit any f (n) is a unique convex linear superposition of extremal
(i.e. pure) n particle states, and that these pure states are products of n identi-
cal one-particle functions f evaluated at n generally different velocities. Each of
the f in the support of the superposition measure represents the velocity density
function of an actual individual member of the infinite statistical ensemble of
infinitely-many-particles systems. In formulas, at τ = 0 the initial data for f (n)

read

f (n)(v1, . . . , vn; 0) = 〈 f ⊗n
0 (v1, ..., vn)〉, (44)

where 〈 . 〉 is the Hewitt–Savage(8) ensemble decomposition measure on the space
of initial velocity density functions f0 of individual physical systems with same
mass m( f0)(= 1), momentum p( f0) = u0 and energy e( f0) = e0 = ε0 + |u0|2/2.
To extend this representation to τ > 0, let U (n)

τ denote the one-parameter evolution
semigroup for (32), i.e. f (n)(v1, . . . , vn; τ ) = U (n)

τ f (n)
0 (v1, . . . , vn). Noting now

that the Hewitt–Savage measure is of course invariant under the evolution, and
that by the linearity of (32) it commutes with the linear operator U (n)

τ for all τ � 0,

13 More precisely, they are only essentially linear, for the parameters ε0 and u0, which also enter any
of the other hierarchies whenever they describe ensembles of systems conserving mass, momentum,
and energy, are all tied up with the initial conditions.



The Linear Fokker-Planck Equation for the Ornstein-Uhlenbeck Process 541

it follows that at later times τ > 0 the n point density of the ensemble is given by

f (n)(v1, . . . , vn; τ ) = 〈U (n)
τ f ⊗n

0 (v1, ..., vn)〉. (45)

This so far simply states that, if the ensemble is initially a statistical mixture of pure
states (product states), then at later times it is a statistical mixture of time-evolved
initially pure states. Next we note that by inspection of (32) it follows that

U (n)
τ f ⊗n

0 (v1, ..., vn) = (U (1)
τ f0)⊗n(v1, ..., vn), (46)

viz. pure states evolve into pure states. Every factor f (vk ; τ ) = U (1)
τ f0(vk) solves

(12) with τ = 2ε0
3 t , obeying the desired conservation laws. At last one can legiti-

mately say that (12) has been derived as a full-fledged kinetic equation valid for
almost every (w.r.t. 〈 . 〉) individual member of the limiting ensemble.

6. SUMMARY AND OUTLOOK

In summary, the diffusion equation on M
3N−4
u0,e0

can be interpreted as the sim-
plest “master equation” for an underlying N -body Markov process with single-
particle and pair terms. The N → ∞ limit for the marginal densities of solu-
tions to the diffusion equation is well-defined and can be carried out explicitly.
After invoking the Hewitt–Savage decomposition, the limit N → ∞ is seen to
produce solutions of the “kinetic Fokker–Planck equation” describing individual
isolated systems conserving mass, momentum, and energy. The Fokker–Planck
equation (9) is exactly solvable and displays correctly the qualitative behavior of
a typical kinetic equation. In this sense, (9) really can be regarded as the sim-
plest example of a kinetic equation of the “diffusive” type, in the same family
as, for instance, the much more complex Landau and Balescu-Lenard-Guernsey
equations.

Our work raises many new questions. (1) In particular, in Appendix A.1.2
we have only written down the generator for the adjoint process of the under-
lying N -particle Markov process; hence, what is the explicit characterization of
this process? (2) A derivation of a kinetic equation à la Kac is an intermediate
step towards a full validation from some deterministic (Hamiltonian) microscopic
model, which is in general a very difficult program, see the rigorous derivations
of kinetic equations in Refs. (5, 15). The substitute Markov process is usually
chosen to preserve some of the essential features of the deterministic dynamics
which (formally) leads to the same kinetic equation. Here we have only identified a
stochastic model which leads to (9). Villani’s work(17) suggests that a deterministic
model may exist which in the kinetic regime leads to (9). Can one indentify this
model? (3) In this paper, we conveniently assumed that the Fourier coefficients
ensure convergence of the marginal density functions in L2 ∩ L1 and subsequently
upgraded the regularity to Schwartz functions. What are the explicit conditions
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on the Fourier coefficients of the initial functions on M
3N−4
u0,e0

which ensure conver-
gence in L2 ∩ L1, in Schwartz space, in some topology for measures? (4) Since the
PDEs in our finite-N Fokker–Planck hierarchy are already self-contained for each
n (viz., they do not involve the usual coupling to f (n+1)), the finite-N corrections
to the limiting evolutions can be studied in great detail; hence, for instance, how do
the explicit corrections to propagation of chaos look? (5) We already mentioned
in a footnote that the kinetic Fokker–Planck equation can easily be generalized to
situations where the system is exposed to some external driving force by adding a
forcing term. Can one derive this equation from some suitable ensemble of driven
systems? Under which conditions do there exist stationary non-equilibrium states,
and what are their stability properties? (6) Finally, our derivation is only valid
for the space-homogeneous Fokker–Planck equation without driving force term;
hence, can one extend our derivation to obtain the space-inhomogeneous general-
ization of the kinetic Fokker–Planck equation, first without and then with driving
force term? These are many interesting questions which should be answered in
future works.
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A.1. APPENDIX A: TWO USEFUL REPRESENTATIONS OF THE

LAPLACIAN ON SPHERES

A.1.1. Extrinsic Representation in Divergence Form

For the purpose of obtaining equations for the marginals by integrating (14),
it is advantageous to express the Laplacian on the right-hand side in terms of the
projection operator P

M
3N−4
u0 ,e0

from R
3N to the fibers of the tangent bundle of the

embedded manifold M
3N−4
u0,e0

. It is easy to verify(11) that

�
M

3N−4
u0 ,e0

F (N ) = ∇ ·
[

P
M

3N−4
u0 ,e0

∇F (N )
]

(A.1)

In order to have an explicit expression for P
M

3N−4
u0 ,e0

we introduce an orthogonal basis

for the orthogonal complement of the tangent space to M
3N−4
u0,e0

at V ∈ M
3N−4
u0,e0

⊂
R

3N . Clearly, such orthogonal complement is spanned by the four vectors V and
Eσ = (eσ , . . . , eσ ), σ = 1, 2, 3, where the eσ are the standard unit vectors in R

3.
The vectors Eσ are orthogonal to each other but not to V ; projecting away the
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non-orthogonal component of V yields(
I3N − 1

N

3∑
σ=1

Eσ ⊗ Eσ

)
· V = V − U . (A.2)

The vectors {V − U, E1, E2, E3} form the desired orthogonal basis; their mag-
nitudes are |Eσ | = √

N and |V − U | = √
2Nε0. Finally, (A.1) becomes

�
M

3N−4
u0 ,e0

F (N ) = ∂V ·
[(

I3N − 1

N

3∑
σ=1

Eσ ⊗ Eσ − 1

2Nε0
(V −U) ⊗ (V −U)

)

· ∂V F (N )

]
(A.3)

A.1.2. Representation for the N-Body Markov Process

In the main part of this paper we started from the diffusion equation on
the manifold M

3N−4
u0,e0

of N -body systems with same energy (per particle) e0 and
momentum (per particle) u0, then took the limit N → ∞, obtaining the kinetic
Fokker–Planck equation (12), which rewrites into (9) in view of the conservation
laws. The Laplace–Beltrami operator on M

3N−4
u0,e0

is the generator of the adjoint
semigroup of the underlying stochastic Markov process that rules the microscopic
dynamics of an individual N -body system. Here we show that this generator can be
written as a sum of single particle and two-particle operators, thus characterizing
the Markov process as a mixture of individual stochastic motions and stochastic
binary interactions. Moreover, we show that the binary particle operators are the
only ones that do not vanish in the N → ∞ limit. This means that the kinetic
Fokker–Planck equation can also be derived in terms of an N -body stochastic
process with purely binary interactions, which is more satisfactory from a physical
point of view.

Recall that in section 2 we explained that M
3N−4
u0,e0

can be identified with the
sphere S

3N−4√
2Nε0

centered at the origin of L
3N−3 (which itself is an affine linear

subspace of the space of all velocities, R
3N ). Recall that �

S
3N−4√

2Nε0

= 1
2Nε0

�S3N−4 .

Note the well-known representation

�S3N−4 =
∑

1�k<l�3(N−1)

(
wk∂wl − wl∂wk

)2
, (A.4)

where wk is the k-th Cartesian component of W ∈ S
3N−4 ⊂ R

3(N−1) (note that
in section 2 we used W ∈ S

3N−4√
2Nε0

, but note furthermore that the r.h.s. of (A.4) is
invariant under W → λW ). Grouping the components of W into blocks of vectors
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wk ∈ R
3, k = 1, . . . , N − 1, the r.h.s. of (A.4) can be recast as

�S3N−4 =
N−1∑
k=1

N−1∑
l=1
l �=k

(
3wk · ∂wk + |wk |2 ∂wl · ∂wl − (

wk · ∂wk

)(
wl · ∂wl

))

−
N−1∑
k=1

(
wk × ∂wk

)2
, (A.5)

containing one-body terms as well as binary terms. Note however that the first
term in the binary sum is effectively a sum of two-body terms in disguise, which
scale with factor N − 2 and thus survive in the limit N → ∞, while the true
one-body sum (second line) drops out in that limit. This implies that the kinetic
Fokker–Planck equation (12) can be derived from a master equation on M

3N−4
u0,e0

which contains only the binary terms (first line) in (A.5). This in turn implies that
(12) is the kinetic equation for an underlying system of N particles with stochastic
pair interactions.

A.1.3. High-Dimension Asymptotics of Associated Legendre

Functions

In (30) the associated Legendre functions of degree s = 0, 1, 2, ... and order
r = 0, ..., s in q dimensions occur. They are defined on the interval [−1, 1] and
given by

P̃r
s (t ; q) = √

qs+r s!

2r


(
q − 1

2

)⌊
s−r

2

⌋∑
l=0

(
−1

4

)l (1 − t2)l+ r
2 t s−r−2l

l! (s − r − 2l)! 
(

l + r + q−1
2

)
(A.6)

which differ from the Pr
s (t ; q) in Ref. (13) in their normalization. In our investi-

gation, q = 3N − p and t = w√
2Nε0

, and we are interested in the limit N → ∞.
The familiar asymptotics of Euler’s Gamma function gives us

 (x)

 (a + x)
= x−a + O

(
x−(a+1)

)
. (A.7)

for x � 1. Applying this asymptotics with 2x = q − 1 = 3N − p − 1 and
a = l + r to (A.6), we find that given p ∈ N and w ∈ R (which implies N >
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max{p/3, w2/(2ε0)}), when N � 1 we have

P̃r
s

(
w√
2Nε0

; 3N − p

)
=

√
2

r−s

⌊
s−r

2

⌋∑
l=0

(−1)l s!

l! (s − r − 2l)!

(√
3
ε0

w
)s−r−2l

+ O

(
1√
N

)
. (A.8)

By comparing with the formula for the Hermite polynomial of degree k on R,

Hk(x) =

⌊
k
2

⌋∑
l=0

(−1)l+k s!

l! (k − 2l)!
(2x)k−2l , (A.9)

we see that, given p ∈ N and w ∈ R, we have

P̃r
s

(
w√
2Nε0

; 3N − p

)
=

(
−

√
2
)r−s

Hs−r

(√
3

4ε0
w
)

+ O

(
1√
N

)
(A.10)

when N � 1. Hence, for all fixed p we now find that pointwise for any w ∈ R,

lim
N→∞

P̃r
s

(
w√
2Nε0

; 3N − p

)
=

(
−

√
2
)r−s

Hs−r

(√
3

4ε0
w
)

(A.11)

where again it is understood that N > max{p/3, w2/(2ε0)} in the expression under
the limit in the left-hand side. Equation (35) in the main text follows.
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